Источники энергии в будущем окружающий мир. Источники энергии — Гипермаркет знаний. Энергия – с чего все началось

Для решения проблемы ограниченности ископаемых видов топлива исследователи во всем мире работают над созданием и внедрением в эксплуатацию альтернативных источников энергии. И речь идет не только о всем известных ветряках и солнечных батареях. На смену газу и нефти может прийти энергия от водорослей, вулканов и человеческих шагов. Recycle выбрал десять самых интересных и экологически чистых энерго-источников будущего.


Джоули из турникетов

Тысячи людей каждый день проходят через турникеты при входе на железнодорожные станции. Сразу в нескольких исследовательских центрах мира появилась идея использовать поток людей в качестве инновационного генератора энергии. Японская компания East Japan Railway Company решила оснастить каждый турникет на железнодорожных станциях генераторами. Установка работает на вокзале в токийском районе Сибуя: в пол под турникетами встроены пьезоэлементы, которые производят электричество от давления и вибрации, которую они получают, когда люди наступают на них.

Другая технология «энерго-турникетов» уже используется в Китае и в Нидерландах. В этих странах инженеры решили использовать не эффект нажатия на пьезоэлементы, а эффект толкания ручек турникета или дверей-турникетов. Концепция голландской компании Boon Edam предполагает замену стандартных дверец при входе в торговые центры (которые обычно работают по системе фотоэлемента и сами начинают крутиться) на двери, которые посетитель должен толкать и таким образом производить электроэнергию.

В голландском центре Natuurcafe La Port такие двери-генераторы уже появились. Каждая из них производит около 4600 киловатт-час энергии в год, что на первый взгляд может показаться незначительным, но служит неплохим примером альтернативной технологии по выработке электричества.


Ни для кого не секрет, что используемые сегодня человечеством ресурсы конечны, более того, их дальнейшая добыча и использование может привести не только к энергетической, но и к экологической катастрофе. Традиционно используемые человечеством ресурсы — уголь, газ и нефть — закончатся уже спустя несколько десятилетий, и меры нужно принимать уже сейчас, в наше время. Конечно, можно надеяться, что мы вновь найдем какое-либо богатое месторождение, так же как было в первой половине прошлого века, однако ученые уверены, что таких крупных залежей уже нет. Но в любом случае даже открытие новых месторождений только отсрочит неизбежное, необходимо найти способы производства альтернативной энергии, и переходить на возобновляемые ресурсы, такие как ветер, солнце, геотермальная энергия, энергия водных потоков и другие, а наряду с этим нужно продолжать разработки энергосберегающих технологий.

В этой статье мы рассмотрим несколько самых перспективных, на взгляд современных ученых, идей, на которых будет строиться энергетика будущего.

Солнечные станции

Люди издавна задумывались над тем, возможно ли Под солнечными лучами нагревали воду, сушили одежду и глиняную посуду перед ее отправкой в печь, однако эти способы нельзя назвать эффективными. Первые технические средства, преобразующие солнечную энергию, появились еще в 18 веке. Французский ученый Ж. Бюффон показал опыт, в котором ему удалось с помощью большого вогнутого зеркала в ясную погоду воспламенить сухое дерево с расстояния около 70 метров. Его соотечественник, известный ученый А. Лавуазье, применял линзы, чтобы концентрировать энергию солнца, а в Англии создали двояковыпуклое стекло, которое, фокусируя солнечные лучи, расплавляло чугун всего за несколько минут.

Естествоиспытатели проводили множество опытов, которые доказывали, что солнца на земле возможно. Однако солнечная батарея, которая превращала бы солнечную энергию в механическую, появилась сравнительно недавно, в 1953 году. Ее создали ученые из Национального аэрокосмического агентства США. Уже в 1959 году солнечную батарею впервые применили для оснащения космического спутника.

Возможно уже тогда, осознав, что в космосе такие батареи гораздо эффективнее, ученым пришла идея о создании космических солнечных станций, ведь за час солнце вырабатывать столько энергии, сколько все человечество не потребляет и за год, так почему же не использовать это? Какой будет солнечная энергетика будущего?

С одной стороны кажется, что использование солнечной энергии идеальный вариант. Однако себестоимость огромной космической солнечной станции очень высока, да и к тому же она будет дорога в эксплуатации. Со временем, когда будут введены новые технологии по доставке грузов в космос, а также новые материалы, реализация подобного проекта станет возможной, но пока мы можем пользоваться только относительно небольшими батареями на поверхности планеты. Многие скажут, что это тоже неплохо. Да, возможно в условиях частного дома, но для энергообеспечения больших городов, соответственно, необходимо либо множество солнечных батарей, либо технология, которая сделает их эффективнее.

Экономическая сторона вопроса здесь тоже присутствует: любой бюджет сильно пострадает, если на него будет возложена задача перевести целый город (или всю страну) на солнечные батареи. Казалось бы, можно обязать жителей городов выплачивать некоторые суммы на переоснащение, но в таком случае недовольны будут они, ведь если бы люди готовы были бы пойти на такие траты, они уже давно сделали бы это сами: возможность купить солнечную батарею есть у каждого.

Касательно солнечной энергии есть и еще один парадокс: затраты на производство. Перевод энергии солнца в электричество напрямую — не самая эффективная вещь. До сих пор еще не найдено способа лучше, чем использовать солнечные лучи для нагревания воды, которая, превращаясь в пар, в свою очередь вращает динамо-машину. В таком случае энергопотеря минимальна. Человечество хочет использовать "экологичные" солнечные панели и солнечные станции, чтобы сохранить ресурсы на земле, однако для подобного проекта потребуется огромное количество тех же ресурсов, и "неэкологичной" энергии. Например, во Франции недавно была построена солнечная электростанция, площадью около двух квадратных километров. Стоимость постройки составила около 110 миллионов евро, не считая затрат на эксплуатацию. При всем этом следует учитывать, что срок службы подобных механизмов составляет около 25 лет.

Ветер

Энергия ветра — также использовалась людьми еще с древности, самым простым примером можно назвать хождение под парусом и ветряные мельницы. Ветряки используются и сейчас, особенно они эффективны в областях с постоянными ветрами, например на побережье. Ученые постоянно выдвигают идеи, как модернизировать уже имеющиеся приспособления для преобразования ветряной энергии, одна из них - ветряки в виде парящих турбин. За счет постоянного вращения они могли бы "висеть" в воздухе на расстоянии нескольких сотен метров от земли, где ветер сильный и постоянный. Это помогло бы в электрификации сельской местности, где невозможно использование стандартных ветряков. К тому же такие парящие турбины могли бы быть оснащены интернет-модулями, с помощью которых осуществлялось бы обеспечение людей доступом в мировую паутину.

Приливы и волны

Бум на солнечную и ветряную энергетику постепенно проходит, и интерес исследователей привлекла другая природная энергия. Более перспективной считается использование приливов и отливов. Уже сейчас этим вопросом занимается около ста компаний по всему миру, существует и несколько проектов, доказавших эффективность данного способа добычи электричества. Преимущество перед солнечной энергетикой в том, что потери при переводе одной энергии в другую минимальны: приливная волна вращает огромную турбину, которая и вырабатывает электричество.

Проект "Устрица" — это идея установить на дне океана шарнирный клапан, который будет подавать воду на берег, тем самым вращая простую гидроэлектрическую турбину. Всего одна такая установка могла бы обеспечить электричеством небольшой микрорайон.

Уже сейчас в Австралии успешно применяют приливные волны: в городе Перте установлены опреснители, работающие на этом типе энергии. Их работа позволяет обеспечить пресной водой около полумиллиона человек. Природная энергетика и промышленность также могут сочетаться в этой отрасли производства энергии.

Использование несколько отличается от технологий, которые мы привыкли видеть в речных гидроэлектростанциях. Часто ГЭС наносят вред окружающей среде: затопляются прилегающие территории, разрушается экосистема, а вот станции, работающие на приливных волнах, в этом плане гораздо безопаснее.

Энергия человека

Одним из самых фантастических проектов в нашем списке можно назвать использование энергии живых людей. Звучит ошеломляюще и даже несколько ужасающе, но не все так страшно. Ученые лелеют мысль о том, как использовать механическую энергию движения. Речь в этих проектах идет о микроэлектронике и нанотехнологиях с низким энергопотреблением. Пока звучит как утопия, реальных разработок нет, но идея весьма интересная и не покидает умы ученых. Согласитесь, весьма удобны будут устройства, которые подобно часам с автоматической подзаводкой, будут заряжаться от того, что по сенсору проводят пальцем, или от того, что планшет или телефон просто болтается в сумке при ходьбе. Не говоря уж об одежде, которая, наполненная разными микроустройствами, могла бы преобразовывать в электричество энергию движения человека.

В Беркли, в лаборатории Лоуренса, например, ученые попытались воплотить в жизнь идею о том, чтобы использовать вирусы для давления в электричество. Небольшие механизмы, работающие от движения, так же имеются, однако пока что на поток подобная технология не поставлена. Да, с глобальным энергетическим кризисом подобным образом не справиться: скольким же людям придется "крутить педали", чтобы заставить работать целый завод? Но как одна из мер, применяемых в комплексе, теория вполне жизнеспособна.

Особенно подобные технологии будут эффективны в труднодоступных местах, на полярных станциях, в горах и тайге, среди путешественников и туристов, у которых не всегда есть возможность зарядить свой гаджет, а вот оставаться на связи важно, особенно если группа попала в критическую ситуацию. Как много всего можно было бы предотвратить, если бы у людей всегда было надежное устройство связи, не зависящее "от розетки".

Топливные ячейки водорода

Пожалуй, у каждого владельца авто, глядящего на индикатор количества бензина, приближающийся к нулю, возникала мысль о том, как отлично было бы, если бы машина работала на воде. Но сейчас ее атомы попали в поле зрения ученых как настоящие объекты энергетики. Дело в том, что в частицах водорода — самого распространенного газа во вселенной — содержится громадное количество энергии. Более того, двигатель сжигает этот газ практически без побочных продуктов, то есть, мы получаем очень экологичное топливо.

Водородом заправляют некоторые модули МКС и шатлы, но на Земле он существует в основном в виде соединений, таких как вода. В восьмидесятых годах в России были разработки самолетов, использующих в качестве топлива водород, эти технологии даже применяли на практике, и экспериментальные модели доказали свою эффективность. Когда водород отделяется, он перемещается в специальную топливную ячейку, после чего возможна генерация электричества напрямую. Это не энергетика будущего, это уже реальность. Подобные автомобили уже производятся и довольно большими партиями. Компания Honda, дабы подчеркнуть универсальность источника энергии и авто в целом, провела эксперимент в результате которого машина была подключена к электрической домашней сети, однако не для того, чтобы получить подзарядку. Автомобиль может обеспечивать энергией частный дом в течение нескольких дней, или проехать без дозаправки почти пятьсот километров.

Единственный недостаток подобного источника энергии на данный момент — это относительно высокая стоимость таких экологичных машин, и, конечно, достаточно небольшое количество водородных заправок, однако во многих странах уже планируется их постройка. Например, в Германии уже стоит план об установке ста заправочных станций к 2017 году.

Тепло земли

Превращение тепловой энергии в электричество — это и есть сущность геотермальной энергетики. В некоторых странах, где затруднено использование других отраслей, она используется довольно широко. Например, на Филлипинах 27 % всего электричества приходится именно на геотермальные станции, а в Исландии этот показатель составляет около 30 %. Сущность этого способа добычи энергии довольно проста, механизм схож с простой паровой машиной. До предполагаемого "озера" магмы необходимо пробурить скважину, через которую подается вода. При контакте с раскаленной магмой вода мгновенно превращается в пар. Он поднимается, где крутит механическую турбину, тем самым вырабатывая электричество.

Будущее геотермальной энергетики состоит в том, чтобы найти большие "хранилища" магмы. Например, в вышеупомянутой Исландии это удалось: раскаленная магма за долю секунды превратила всю закачанную воду в пар температурой около 450 градусов по Цельсию, что является абсолютным рекордом. Подобный пар высокого давления способен повысить эффективность геотермальной станции в несколько раз, это может стать толчком к развитию геотермальной энергетики во всем мире, особенно в областях, насыщенных вулканами и термальными источниками.

Использование ядерных отходов

Атомная энергетика, в свое время, произвела настоящий фурор. Так было до тех пор, пока люди не осознали всю опасность этой отрасли энергетики. Аварии возможны, от подобных случаев никто не застрахован, но они весьма редки, а вот радиоактивные отходы появляются стабильно и до недавнего времени ученые не могли решить эту проблему. Дело в том, что стержни урана — традиционное "топливо" АЭС, может быть использовано только на 5 %. После выработки этой небольшой части, весь стержень отправляется на "свалку".

Ранее применялась технология, при которой стержни погружались в воду, которая замедляет нейтроны, поддерживая устойчивую реакцию. Сейчас вместо воды стали использовать жидкий натрий. Эта замена позволяет не только использовать весь объем урана, но и переработать десятки тысяч тонн радиоактивных отходов.

Избавить планету от отходов атомной энергетики важно, но в самой технологии есть одно "но". Уран относится к ресурсам, и его запасы на Земле конечны. В случае если всю планету перевести исключительно на энергию, получаемую от АЭС (к примеру, в США АЭС производят лишь 20% всего потребляемого электричества), запасы урана будут истощены довольно быстро, и это снова приведет человечество на порог энергетического кризиса, так что атомная энергетика, пусть и модернизированная, только временная мера.

Растительное топливо

Еще Генри Форд, создав свою "Модель Т", рассчитывал, что она уже будет работать на биотопливе. Однако в то время были открыты новые нефтяные месторождения, и нужда в альтернативных источниках энергии отпала еще на несколько десятков лет, но теперь снова возвращается.

За последние пятнадцать лет использование растительных видов топлива, таких как этанол и биодизель, возросло в несколько раз. Их используют как самостоятельные источники энергии, так и в качестве добавок к бензину. Некоторое время назад надежды возлагались на особую просяную культуру, получившую название "канола". Она совершенно непригодна в пищу ни для людей, ни для скота, однако обладает высокими показателями масличности. Из этого масла и стали производить "биодизель". Но эта культура займет слишком много места, если попытаться вырастить ее столько, чтобы обеспечить топливом хотя бы часть планеты.

Теперь ученые заговорили об использовании водорослей. Их масличность около 50 %, что позволит так же легко извлекать масло, а отходы можно превращать в удобрения, на основе которых будут выращиваться новые водоросли. Идея считается интересной, но свою жизнеспособность пока что не доказала: публикация об успешных экспериментах в этой области пока не опубликовано.

Термоядерный синтез

Будущая энергетика мира, по мнению современных ученых, невозможна без технологий Это, на данный момент, самая перспективная разработка, в которую уже вкладывают миллиарды долларов.

В используется энергия деления. Она опасна тем, что есть угроза возникновения неуправляемой реакции, которая уничтожит реактор, и приведет к выбросу огромного количества радиоактивных веществ: пожалуй, все помнят аварию на Чернобыльской АЭС.

В реакциях термоядерного синтеза, что следует из названия, используется энергия, выделяемая при слиянии атомов. В результате, в отличие от атомного деления, не образуется никаких радиоактивных отходов.

Главной проблемой является то, что в результате термоядерного синтеза образуется вещество, имеющее настолько высокую температуру, что может уничтожить весь реактор.

Будущего — реальность. И фантазии здесь неуместны, на данный момент на территории Франции уже началась постройка реактора. Несколько миллиардов долларов вложено в экспериментальный проект, который профинансирован многими странами, в число которых, помимо ЕС, входят Китай и Япония, США, Россия и другие. Изначально первые эксперименты планировалось запустить уже в 2016 году, однако расчеты показали, что бюджет слишком мал (вместо 5 миллиардов потребовалось 19), и запуск перенесли еще на 9 лет. Возможно, через несколько лет мы увидим, на что способна термоядерная энергетика.

Проблемы настоящего и возможности будущего

Не только ученые, но и писатели-фантасты, дают множество идей для воплощения технологии будущего в энергетике, однако все сходятся на том, что пока что ни один из предложенных вариантов не может произвести полное обеспечение всех потребностей нашей цивилизации. К примеру, если все автомобили в США будут ездить на биотопливе, полями канолы придется засадить территорию, равную половине всей страны, без учета того, что земель, пригодных для земледелия в Штатах не так уж много. Более того, пока что все способы производства альтернативной энергии - дороги. Пожалуй, каждый из простых городских жителей, согласен, что важно использовать экологически чистые, возобновляемые ресурсы, однако не в случае, когда им озвучивают стоимость такого перехода на данный момент. Ученым предстоит еще много работать в этой сфере. Новые открытия, новые материалы, новые идеи - все это поможет человечеству успешно справиться с назревающим ресурсным кризисом. Решить планеты можно только комплексными мерами. В некоторых областях удобнее применять добычу энергии с помощью ветра, где-то - солнечные батареи, и так далее. Но, возможно, главным фактором станет снижение энергопотребления в целом и создание энергосберегающих технологий. Каждый человек должен понимать, что несет ответственность за планету, и каждый должен задать себе вопрос: "Какую энергетику я выбираю для будущего?" Прежде чем перейти на другие ресурсы, каждый должен осознать, что это действительно необходимо. Только при комплексном подходе удастся решить проблему энергопотребления.

Когда становится в комнате темно, ты включаешь свет. Когда тебе холодно, ты включаешь обогреватель. На это все тратится энергия. А откуда же берется энергия, которая так необходимая каждому из нас?

Для получения электроэнергии, которая в твоей розетке, сжигается уголь, нефть и природный газ. Но можно получить энергию и другим путем, например от Солнца, ветра, воды, биомассы и горячих источников.

1. Рассмотри рисунки. На них изображено два пути получения энергии. Какой из них наносит ущерб окружающей среде, а какой — нет? Запиши свои ответы под рисунком и обоснуй их.

2. Знаешь ли ты, какие еще бывают возможности получения электроэнергии? Расскажи о них.

Запасы угля, нефти и природного газа в ближайшее время могут исчерпаться. Такая же проблема с ураном, на котором работают атомные электростанции. Эти источники энергии и называются не возобновляемыми, потому что они могут закончиться.

Возобновляемой энергии нужны непочатые источники, такие как Солнце, ветер, вода, биомасса и тепло Земли. Как долго будет существовать Земля, столько еще времени будет светить Солнце, будет дуть ветер и будет течь вода?

ЗАДАЧА :

1. Которое из этих утверждений правильное? Подчеркни.

— большую часть электроэнергии мы получаем из не возобновляемых ресурсов;

— не возобновлённые ресурсы являются неисчерпаемым источником электроэнергии.

2. Обсуди с друзьями, какую пользу или вред приносит человеку использования

Уголя, нефти и природного газа.

ЗНАЕШЬ ЛИ ТЫ

Во время горения угля, нефти и природного газа образовывается много углекислого газа. Он согревает земную атмосферу, создает парниковый эффект и содействует климатическим изменениям.

СОЛНЕЧНАЯ ЭНЕРГИЯ

Солнце — самый большой источник энергии на Земле. С помощью солнечной батареи можно превратить солнечную энергию в электрическую. Для этого используется разное оборудование: от маленьких солнечных батарей, которые в твоем калькуляторе, до огромных солнечных панелей, которые могут занимать всю крышу дома. Солнечную энергию можно получить везде. Этот источник энергии не сопровождается выбросами вредных газов и есть экологически чистым. И хоть преобразование солнечной энергии в электрическую довольно дорогое, но за этим — будущее

ЗНАЕШЬ ЛИ ТЫ

Немецкие ученые подсчитали, что 16 000 кв. км солнечных тепловых электростанций в Северной Африке, соединенные с Европой высоковольтными линиями электропередач, могут вырабатывать достаточно электричества для обеспечения всей Европы. А строительство солнечных электростанций на 1\% площади всех пустынь (территория равная площади Австрии) может удовлетворить общемировые нужды в энергии.

Специальным местом, где вырабатывают большое количество электрического тока из энергии Солнца являются солнечные электростанции. С помощью зеркала сюда фокусируются солнечные лучи, которые нагревает в специальном котле жидкость до 400°С. Жидкость в специальных теплообменниках превращаются в пар, а пар в свою очередь вращает турбину, связанную с генератором, который и вырабатывает электрический ток.

1. Прочитай текст и запиши, какую пользу приносит человеку использования солнечной энергии. Подумай, какой вред это наносит, И запиши в столби рядом.

2. Под каким углом должны стоять солнечные батареи, лишь бы получить оптимальное количество солнечного света?

ОПЫТ №1.

Руки можно согреть не только с помощью варежек, а и на солнце. Как же сделать так, чтобы тепло было более сильным? ПРОВЕДЕМ ОПЫТ. ЧТО НАМ НУЖНО :

Картон, фольга, клей, ножницы, циркуль, линейка и карандаш.

ЧТО НУЖНО ДЕЛАТЬ:

1. На бумаге с помощью циркуля нарисуй круг диаметром 12 см. Наклей круг на алюминиевую фольгу.

2. Сложи круг вдвое и сделай по центру такое отверстие, чтобы можно было вставить указательный палец.

3. Разреж круг до половины, сложи одну сторону поверх другой и склей их между собой. Сторона с фольгой должны быть внутри.

4. Теперь одень круг на указательный палец и подержи его на Солнце.

БУДЬ ОСТОРОЖНЫМ! МОЖНО ОБЖЕЧЬСЯ!

Сила Ветра

Человек уже давно приручил ветер. С помощью хорошего ветра морские суда добирались к намеченной точки на земном шаре. Энергию ветра использовали в ветряных мельницах для переработки леса, как мельничный механизм, как помпу для перекачивания воды и нефти. Теперь уже настало время ветроэлектростанций. Из ветровой энергии вырабатывают электрический ток. При этом не образовывается ни углекислый газ, ни другие вредные вещества. Сила ветра — экологически чистый источник энергии.

Есть люди, которые выступают против ветровых электростанций. Общества защиты животных обеспокоены тем, что огромные крылья ветряных мельниц могут повредить птицам. Население, которое проживает рядом с ветровыми электростанциями, жалуется на яркий свет, и на шум, который создает ветровое колесо. Специалисты считают — польза от энергии ветра превышает ее вред.

Электрическая энергия из соломы и мусора? Звучит смешно, но это так! В большом, герметически закрытом резервуаре, который называется биореактор, перемешиваются отходы животных и остатки растительной биомассы. Бактерии начинают эту смесь разлагать. При этом возникает биогаз. Его можно сжечь и получить электроток или энергию для автомобильного биодизеля. Остальное с биореактора используют как удобрение для полей. Преимущество биологического топлива сравнительно с другими видами — то, что оно полностью разлагается микроорганизмами и потому не вредно для окружающей среды.

Одним из источников биомассы являются леса. При переработке 3-4 мл тонн древесины образовываются отходы, энергетический эквивалент которых составляет 1,1-1,2 мл тонн нефти.

Этот опыт показывает, как бактерии расщепляют биомассу в бутылке и при этом образовывается газ.

200 г измельченного мусора из кухни (например, картофельная шелуха, остатки овощей, листву салата и т. п.);

    5 столовых ложек земли и немного теплой воды;

    Чайная ложка сахара;

    Пластиковая бутылка и воздушный шарик.

1. Поместите в бутылку измельченный мусор и землю. Все это хорошо перемешайте.

2. Добавьте столько теплой воды, что бы бутылка была заполнена до половины, потом добавьте сахар.

3. Оденьте на бутылку воздушный шарик, чтобы воздух не выходил из сосуда.

4. Поставьте бутылку в теплое темное место и подождите три дня. Шарик должен надуться.

Если этого не случится, то оставьте ее еще на два дня! Объясните, что происходит?

Также биогаз можно получить с деревьев и их отходов.

спички; металлический наперсток;

Алюминиевая фольга; цветной провод; щипцы, игла, свечка.

1. 2-3 спички поместите в наперсток (спички должны быть без серы}. Плотно накройте наперсток фольгой и закрепите проводом. ‘

2. Подержите наперсток над свечкой 1 -2 мин.

3. Поставьте наперсток на поверхность (будьте внимательны — он горячий), с помощью иглы сделайте маленькое отверстие в фольге.

У нас под ногами является мощный источник тепла, которое мы на поверхности Земли не ощущаем. Но если бурить Землю вглубь, то температура будет повышаться. Это тепло находится в недрах еще со времен возникновения планеты. Извержение вулканов наглядно свидетельствует об огромном температуре внутри Земли. Ученые оценивают температуру земного ядра в тысячу градусов Цельсия. Она постепенно снижается от горячего внутреннего ядра к поверхности Земли.

«Страна ледников», так называют Исландию, эффективно использует гидротермальную энергию своих недр. Здесь известно свыше 700 термальных источников, которые выходят на земную поверхность. Около 60\% население пользуется геотермальными водами для обогрева домов.

Вода имеет большую силу. Чем быстрее течет вода, тем больше её сила и тем больше энергии из этого может получить человек.

Гидроэнергетическое оборудование в основном устанавливают на больших равнинных реках, но иногда — и на маленьких горных. Построенные дамбы задерживают водные потоки. Вода поднимается и образовывается водохранилище. Из него вода вытекает через трубы к турбинам, а те в свою очередь связаны с генератором, который вырабатывает ток.

Гидроэлектростанция — общепризнанный образец получения энергии, который не

Загрязняет воздух. Но вредное влияние на екосистему все же существует. Это поля

Рощи. Для работы гидроэлектростанций необходимо затопление значительных

Площадей плодородных грунтов. Очень страдает от ГЭС рыба. Она не может проходить

Сквозь плотины к местам своих обычных нерестилищ. Много рыбы и планктонов гибнет

в лопатах турбин.

Из — за строительства каскада водохранилищ на Днепре затоплено и уничтожено свыше 6 тысяч населенных пунктов, переселено свыше 3 млн. человек.

Имеет как положительные, так и негативные стороны

1. Использование гидроэнергии Заполни таблицу.

2. Нарисуй плакат, который расскажет, как человек использовал энергию воды 100 лет.

Представляем вам список из десяти самых многообещающих источников энергии будущего.




Каждый час земля получает столько солнечной энергии, больше, чем земляне ее используют за целый год. Один из способов использование этой энергии, создание гигантских солнечных ферм, которые будут собирать часть высокоинтенсивного и бесперебойного солнечного излучения.

Огромные зеркала будут отражать солнечные лучи на коллектора меньшего размера. Затем эта энергия будет передаваться на землю с помощью микроволновых или лазерных пучков.

Одна из причин, почему этот проект находится на стадии идеи – это его огромная стоимость. Тем не менее, он может стать реальностью не в столь отдаленное время из-за развития гелеотехнологий и уменьшения стоимости вывоза грузов в космос.

9. Энергия человека



У нас уже есть устройство заряжаемое человеком, но ученые работают над тем, как получить энергию от обычного движения. Речь идет о микроэлектронике, но потенциал велик, при целевой аудитории в миллиард людей. Сегодня разрабатывается электроника, потребляющая все меньше энергии и однажды возможно, ваш телефон будет заряжаться, болтаясь в сумке, в кармане или в ваших руках и при вождением пальцем по экрану.

В национальной лаборатории Лоуренса в Беркли ученые представили устройство, использующие вирусы для трансформации давления в электричество. Это звучит потрясающе, но пока объяснить, как это работает невозможно. Так же есть небольшие переносные системы пассивно производящие энергию во время вашего движения. Энергия человека не спасет от глобального потепления, но может спасти любая мелочь.

По своей сути энергия является общепринятой мерой различных форм движения материи и принята во всём мире в качестве меры перехода движения материи из одной формы в другую. Эти вопросы достаточно подробно рассматриваются в школьном курсе физики.

Наверняка многие из наших читателей вспомнят и о видах энергии, про которые рассказывают в школе. Самой первой в этом списке оказывается кинетическая энергия - энергия механической системы, зависящая от скоростей движения её точек. Следом изучаются:

  • Потенциальная энергия.
  • Электромагнитная энергия.
  • Гравитационная энергия.
  • Ядерная энергия.
  • Энергия взрыва.
  • Химический потенциал .

Эти виды энергии имеют физический смысл. Но как только речь заходит о солнечной энергии или об энергии ветра, мы уже сталкиваемся с описательным смыслом. Практически все из перечисленных видов энергии сегодня активно используются человеком и нередко предстают перед нами в различных формах. Но в быту мы сталкиваемся, главным образом, с теплом и светом. С них и начнём.

Источники энергии

Когда речь заходит об источниках энергии которые позволяют обеспечивать электро- и теплоснабжение и не только их, первое, что приходит на ум - полезные ископаемые. Примерно здесь и начинается самое интересное. По имеющимся данным, да и без них тоже, очевидно, что с годами энергопотребление растёт просто невероятно.

Так вот, все существующие и известные на сегодняшний день науке источники энергии можно разделить на две большие группы: невозобновляемые и постоянные (или возобновляемые, если угодно). К первым относятся полезные ископаемые : уголь, газ, нефть, радиоактивные элементы. Во вторую категория попадают вода, ветер, солнечный свет, геотермальные источники.

И если воду уже активно используют, то над ветром и светом пока раздумывают. На сегодняшний день вопрос о наиболее эффективных способах использования энергии ветра и солнца является одним из самых обсуждаемых. Ведь эти источники не просто возобновляемые - они практически неисчерпаемы.

Способы получения

Если обратиться к цифрам, они расскажут о том, что 75% всей вырабатываемой сегодня энергии получают из угля и прочих ископаемых. Практически в каждом крупном городе есть тепло-электростанция (ТЭС), государственная районная электростанции (ГРЭС) или теплоэлектроцентраль (ТЭЦ). Они-то и "раздают" тепло и свет в наши дома.

Главным источником энергии для этих предприятий является каменный уголь, который ежедневно сжигают сотнями тонн, чтобы мы могли хранить продукты в холодильнике, смотреть телевизор или печь пироги в электрической духовке.

Такой способ получения энергии экологичным назвать можно только с очень большой натяжкой. С использованием энергии воды дела обстоят чуть лучше, но и здесь не без бед и, простите за каламбур, подводных камней.

Строительство гидроэлектростанций (ГЭС) не только обходится в солидные суммы, но и связана с такими необратимыми изменениями ландшафтов, как вырубка леса на месте строительства, само строительство, а также с организацией водохранилищ. Много ГЭС построить нельзя: не каждая река может дать необходимую энергию.


Что касается атомных электростанций (АЭС), то этот вопрос является одним из самых острых. После трагедии в Чернобыле и недавних событий на АЭС "Фукусима" целесообразность использования атомной энергетики вызывает всё больше сомнений. Особенно с учётом того, что "экологически чистый" атом может натворить таких бед, что хватит не на одно поколение.

В общем, получать энергию можно из многих источников, но можно ли её сохранять, да ещё и достаточно длительное время и в больших объёмах? Попробуем выяснить.

Сохранение энергии

Энергия, конечно, не зерно и не картошка, но её тоже можно собрать и даже какое-то время хранить, постепенно расходуя. Самые простые примеры устройств для накопления энергии:

  • пружина
  • маховик
  • аккумулятор.

Все они работают по-разному. У пружин энергоёмкость высокая, места они занимают немного. И сохранять накопленную энергию они могут очень и очень долго. Сколько пружина может пробыть в сжатом состоянии? Зависит от качеств материала, из которого она сделана.

Большой популярностью пользуются различные маховики, также способные сохранять и передавать достаточно большое количество энергии. Правда, устройства эти характеризуются рядом недостатков, среди которых - неустойчивость при внешних воздействиях.

Аккумуляторы имеют как плюсы, так и минусы. Даже при правильной эксплуатации они рассчитаны на ограниченное число циклов. А при несоблюдении условий вырабатывают свой ресурс значительно быстрее. Впрочем, для мобильных устройств и автомобилей аккумуляторы весьма удобны.


Возможно и накопление энергии за счёт теплоёмкости. К сожалению, подобные накопители либо чрезвычайно дороги, либо недолговечны. Хотя теоретически они способны работать практически вечно.

Наибольшее распространение получили электрические накопители. Самые массовые из них - обычные радиотехнические конденсаторы. Они обладают огромной скоростью накопления и отдачи энергии, способны работать в широком диапазоне температур многие годы. Разделяют их на два класса: неполярные (не содержащие жидкого электролита) и полярные (обычно электролитические).

Есть у конденсаторов и недостатки: во-первых, очень малая удельная плотность запасаемой энергии и, как следствие, небольшая ёмкость; во-вторых, малое время хранения энергии. В итоге область применения конденсаторов ограничивается различными электронными схемами и кратковременным накоплением.

  • Большая Советская Энциклопедия
  • Энциклопедический словарь Брокгауза и Ефрона
  • Свободная электронная энциклопедия Википедия, раздел "Энергия".
  • Свободная электронная энциклопедия Википедия, раздел "Энергетика".
  • Свободная электронная энциклопедия Википедия, раздел "Электрический аккумулятор".
  • Маргулова Т.Х. Атомные электрические станции.
  • ГОСТ 15596-82. Источники тока химические. Термины и определения.
  • Фейнман Ричард. Фейнмановские лекции по физике.
  • Ландау Л.Д., Лифшиц Е.М. Теоретическая физика.